Lesson |
|
Title: Algebra |
Grade: 10-a Lesson: F1 |
Explanation: Hello students, let us learn a new topic in SAT-2 today with definitions, concepts, examples, and worksheets included. |
Lesson:
Formula id | Formula Name | Formula | Note |
---|---|---|---|
1.1 |
Basic operation |
\$"a" + "b" = "b" + "a"\$ |
Addition |
1.2 |
Basic operation |
\$"a" − "b" = −("b" − "a")\$ |
Subtraction |
1.3 |
Basic operation |
\$"a" times "b" = "b" times "a"\$ |
Multiplication |
1.4 |
Basic operation |
\$a/b = b/a\$ (for b≠0) |
Division |
2 |
Distributive Property |
\$"a" times ("b" + "c") = "a" times "b" + "a" times "c"\$ |
|
3.1 |
Exponents |
\$"a"^"m" times "a"^"n" = "a"^("m" + "n")\$ |
Product Rule |
3.2 |
Exponents |
\$"a"^"m" / "a"^"n" = "a"^("m" − "n")\$ |
Quotient Rule |
3.3 |
Exponents |
\$("a"^("m"))^("n") = "a"^("mn")\$ |
Power Rule |
3.4 |
Exponents |
\$"a"^(−"n") = 1/"a"^("n")\$ |
Negative Exponent Rule |
3.5 |
Exponents |
\$"a"^0 = 1\$ |
Zero Exponent Rule |
4.1 |
Factoring |
\$"a"^2 − "b"^2 = ("a" + "b")("a" − "b")\$ |
Difference of Squares |
4.2 |
Factoring |
\$("a" + "b")^2 = "a"^2 + 2"ab" + "b"^2\$ |
Perfect Square Trinomial |
4.3 |
Factoring |
\$("a" - "b")^2 = "a"^2 -2"ab" + "b"^2\$ |
Perfect Square Trinomial |
5.1 |
Factoring |
\$("a" + "b")^3 = "a"^3 + 3"a"^2"b" + 3"ab"^2 + "b"^3\$ |
Cubic trinomial |
5.2 |
Factoring |
\$("a" - "b")^3 = "a"^3 - 3"a"^2"b" + 3"ab"^2 + "b"^3\$ |
Cubic trinomial |
6 |
Factoring |
Solve \$"ax"^2+ "bx" + "c" = 0 (a ≠ 0)\$ \$"x" = (-"b" ± \sqrt(b^(2) - 4"ac"))/ (2"a")\$ |
If \$"b"^2- 4"ac" > 0\$ - Two real unequal solution If \$"b"^2 - 4"ac" = 0\$ - Repeated real solution If \$"b"^2 - 4"ac" < 0\$ - Two complex solutions |
7 |
Distance Formula |
If \$"p"_1 = ("x"_1 , "y"_1)\$ and \$"p"_2 = ("x"_2, "y"_2)\$ are two
points the distance between them is |
|
8 |
Properties of Inequalities |
If a < b then a + c < b + c and a - c < b - c |
|
9 |
Absolute Value equations/Inequalities |
\$|P| = "b" = "p" = -"b" or "p" = "b"\$ |
|
10 |
Complex Numbers |
\$"i" = \sqrt(-1)\$ \$"i"^2 = -1\$ \$\sqrt("a") = "i"\sqrt("a")\$ a ≥ 0 (a + bi) + ( c + di) = a + c + (b + d)i (a + bi) - ( c + di) = a - c + (b - d)i (a + bi) (c + di) = ac - bd + (ad + bc)i \$("a" + "bi") ("a" - "bi") = "a"^2 + "b"^2\$ \$|"a" + "bi"| = \sqrt("a"^2 + "b"^2)\$ Complex Modulus \$\overline("a" + "bi") = "a" - "bi"\$ Complex Conjugate \$(\overline(("a" + "bi") ("a" + "bi"))) = |"a" + "bi"|^2\$ |
|
11 |
Binomial Theorem |
For positive integers n and any real numbers a and b: |
|
12 |
Properties of Radicals |
\$root("n")("a") = "a"^(1/"n")\$ \$root("m")("n") ("a") = root("nm") ("a")\$ \$root("n") ("a"^"n") = "a"\$ if n is odd \$root("n") ("a"^"n") = |"a"|\$ if n is even \$root("n")("ab") = root("n") ("a") root("n") ("b")\$ \$root("n") ("a"/"b") = root("n") ("a") / root("n") ("b")\$ |
|
13 |
Function formulas |
(f + g)(x) = f(x) + g(x) (f - g)(x) = f(x) - g(x) (αf)(x) = αf(x) \$("fg")("x") = "f"("x") times "g"("x") \$ \$ ("f"/"g")("x") = "f"("x")/"g"("x") \$ \$("gof")("x") = "g"("f"("x"))\$ \$"ho"("gof")("x") = ("hog")"of"("x")\$ \$("gof")^(-1)("x") = "f"^(-1)"og"^(-1)("x") \$ |
|
14 |
Linear function |
f(x) = mx + b |
where m is the slope of the line and b is the y-intercept |
15 |
Quadratic Function |
\$ "f"("x") = "ax"^2 + "bx" + "c" \$ |
where a, b, and c are constants and a ≠ 0. |
16 |
Cubic Function |
\$ "f"("x") = "ax"^3 + "bx"^2 + "cx" + "d" \$ |
where a, b, c, and d are constants and a ≠ 0. |
17 |
Exponential Function |
\$ "f"("x") = "a" times "b"^"x" \$ |
where a and b are constants, and b is the base of the exponential. |
18 |
Logarithmic Function |
\$ "f"("x") = log_"b" ("x") \$ |
where b is the base of the logarithm. |
19 |
Trigonometric Functions |
f(x) = sin (x) f(x) = cos (x) f(x) = tan (x) f(x) = csc (x) f(x) = sec (x) f(x) = cot (x) |
Sine Function Cosine Function Tangent Function Cosecant Function Secant Function Cotangent Function |
20 |
Square Root Function |
\$ "f"("x") = \sqrt "x" \$ |
|
21 |
Absolute Value Function |
\$ "f"("x") = | "x" | \$ |
Copyright © 2020-2022 saibook.us Contact: info@saibook.us Version: 1.5 Built: 10-April-2024 09:20AM EST